3.7.84 \(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx\) [684]

Optimal. Leaf size=124 \[ \frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {2 \sqrt {c d f-a e g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{3/2}} \]

[Out]

-2*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))*(-a*e*g+c*d*f)^(
1/2)/g^(3/2)+2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {878, 888, 211} \begin {gather*} \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {2 \sqrt {c d f-a e g} \text {ArcTan}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + g*x)),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g*Sqrt[d + e*x]) - (2*Sqrt[c*d*f - a*e*g]*ArcTan[(Sqrt[g]*Sqr
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/g^(3/2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 878

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Dist[m*((c*e*f + c*d*g - b*e
*g)/(e^2*g*(m - n - 1))), Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b,
c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Intege
rQ[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0] &&  !(IntegerQ[n + p] && LtQ[n + p +
2, 0]) && RationalQ[n]

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx &=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {\left (c d e^2 f+c d^2 e g-e \left (c d^2+a e^2\right ) g\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{e^2 g}\\ &=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {\left (2 e^2 (c d f-a e g)\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{g}\\ &=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {2 \sqrt {c d f-a e g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 114, normalized size = 0.92 \begin {gather*} \frac {2 \sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {g} \sqrt {a e+c d x}-\sqrt {c d f-a e g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{g^{3/2} \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + g*x)),x]

[Out]

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[g]*Sqrt[a*e + c*d*x] - Sqrt[c*d*f - a*e*g]*ArcTan[(Sqrt[g]*Sqrt[a*e +
 c*d*x])/Sqrt[c*d*f - a*e*g]]))/(g^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 143, normalized size = 1.15

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (\arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a e g -\arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c d f -\sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\right )}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, g \sqrt {\left (a e g -c d f \right ) g}}\) \(143\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*((c*d*x+a*e)*(e*x+d))^(1/2)*(arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*e*g-arctanh(g*(c*d*x+a*
e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d*f-(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2))/(e*x+d)^(1/2)/(c*d*x+a*e)^(
1/2)/g/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)/((g*x + f)*sqrt(x*e + d)), x)

________________________________________________________________________________________

Fricas [A]
time = 1.32, size = 329, normalized size = 2.65 \begin {gather*} \left [\frac {{\left (x e + d\right )} \sqrt {-\frac {c d f - a g e}{g}} \log \left (-\frac {c d^{2} g x - c d^{2} f + 2 \, a g x e^{2} - 2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d} g \sqrt {-\frac {c d f - a g e}{g}} + {\left (c d g x^{2} - c d f x + 2 \, a d g\right )} e}{d g x + d f + {\left (g x^{2} + f x\right )} e}\right ) + 2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d}}{g x e + d g}, \frac {2 \, {\left ({\left (x e + d\right )} \sqrt {\frac {c d f - a g e}{g}} \arctan \left (\frac {\sqrt {x e + d} \sqrt {\frac {c d f - a g e}{g}}}{\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}\right ) + \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d}\right )}}{g x e + d g}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

[((x*e + d)*sqrt(-(c*d*f - a*g*e)/g)*log(-(c*d^2*g*x - c*d^2*f + 2*a*g*x*e^2 - 2*sqrt(c*d^2*x + a*x*e^2 + (c*d
*x^2 + a*d)*e)*sqrt(x*e + d)*g*sqrt(-(c*d*f - a*g*e)/g) + (c*d*g*x^2 - c*d*f*x + 2*a*d*g)*e)/(d*g*x + d*f + (g
*x^2 + f*x)*e)) + 2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d))/(g*x*e + d*g), 2*((x*e + d)*sqr
t((c*d*f - a*g*e)/g)*arctan(sqrt(x*e + d)*sqrt((c*d*f - a*g*e)/g)/sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))
 + sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d))/(g*x*e + d*g)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{\sqrt {d + e x} \left (f + g x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(g*x+f)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(sqrt(d + e*x)*(f + g*x)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\left (f+g\,x\right )\,\sqrt {d+e\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)*(d + e*x)^(1/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)*(d + e*x)^(1/2)), x)

________________________________________________________________________________________